π§ How to Use Hugging Face Models in LangChain (2025 Guide)
Are you looking to use Hugging Face models in LangChain for your next AI application? Whether you’re building chatbots, document Q&A systems, or LLM-powered workflows, this complete guide will walk you through the most powerful ways to integrate Hugging Face models with LangChain.
π What is LangChain?
LangChain is a powerful framework designed to build applications powered by Large Language Models (LLMs). It allows developers to combine LLMs with memory, tools, APIs, and documents.
π€ Why Use Hugging Face with LangChain?
- Text generation
- Embeddings
- Summarization
- Question answering
- Translation
LangChain provides simple wrappers to use these modelsβwhether from the Hugging Face Hub or locally.
π Getting Started: Installation
pip install langchain transformers huggingface_hub
pip install accelerate
π‘ 1. Using langchain-huggingface Integration
- This code snippet explains how we can integrate huggingface into langchain. You need to import langchain.llms and huggingFacehub
- Make sure you use repo_id=”gpt2″ – it is the model
- set the termperature and max length
- Print the output (this will demonstrate langchain-huggingace integration
from langchain.llms import HuggingFaceHub
llm = HuggingFaceHub(
repo_id="gpt2",
model_kwargs={"temperature": 0.7, "max_length": 100}
)
print(llm("What is LangChain?"))
π‘ 2. langchain-huggingface example β With Local Model
- This section tells you how you can use langchain-huggingace with local models as well.
- You need to import Autotokenizer, AutoModelForCausalLM, pipeline from transformers package
- Below is the structure of code snipper to use langchain hugging face with local model
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.llms import HuggingFacePipeline
model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
llm = HuggingFacePipeline(pipeline=pipe)
print(llm("Write a short story about Bangalore."))
π¬ 3. langchain-huggingface chat model
- Below is the example of chat model implementation in langchain.
- You can use this code snippet to implement a chat model
from langchain.chat_models import ChatHuggingFace
from langchain.schema.messages import HumanMessage
chat = ChatHuggingFace(
repo_id="HuggingFaceH4/zephyr-7b-beta",
model_kwargs={"temperature": 0.6}
)
response = chat([HumanMessage(content="Explain Hugging Face in simple terms.")])
print(response.content)
π 4. langchain huggingface endpoint (API-based)
from langchain.llms import HuggingFaceEndpoint
llm = HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/your-model",
huggingfacehub_api_token="your-hf-token"
)
print(llm("What is GPT-OSS?"))
π¦ 5. langchain-huggingface pip β Install Recap
pip install langchain transformers huggingface_hub accelerate
π§ 6. langchain-huggingface embeddings
from langchain.embeddings import HuggingFaceEmbeddings
embed = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vector = embed.embed_query("What is GenAI?")
print(vector[:5])
π§ͺ 7. Full langchain-huggingface Example With Chain
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
prompt = PromptTemplate.from_template("Write a blog intro about {topic}")
chain = LLMChain(llm=llm, prompt=prompt)
print(chain.run("Generative AI for startups"))
π 8. langchain-huggingface github
β Final Thoughts
With LangChain and Hugging Face combined, the possibilities are endlessβfrom building GenAI tools to document search apps and advanced chatbots.
π Keywords for this article:
- langchain-huggingface
- langchain huggingface example
- huggingface local model
- huggingface embeddings
- huggingface endpoint
- langchain huggingface chat model
- huggingface pip install
- huggingface github langchain